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A study of the steady vibrations of plates in flows of liquid and gas (nonlinear panel 
flutter) makes it possible to determine the actual level of vibration of the surface in the 
flow. There has already been a large number of studies of nonlinear plate flutter in uniform 
supersonic flows (see [1-3], for example). Dowell [4] demonstrated the potential for dynamic 
chaos in supersonic panel flutter. Solving the analogous problem for subsonic flow requires 
allowance for the effect of interaction of plate deflection with the boundary layer of this 
flow. 

In the present study, we examine the nonlinear flutter of one plate and a system of 
two adjacent plates with fastened edges. The plates are under the turbulent boundary layer 
of a slightly compressible (essentially subsonic) flow. The plates are butt-joined along 
the flow at the same level and have a flat rigid surface. The density of the stationary 
medium on the opposite side of the surface is assumed to be negligibly low. We will explore 
the possibility of the onset of dynamic chaos in such a system. The analysis will be based 
on the results in [5, 6], which determined the linear response of the mean flow to unimodal 
harmonic vibration of the plates. 

i. Analytic Approximations for Elements of the Matrix of Apparent Additional Elastici- 

ties. Following [6], we will examine the vibration of adjacnet plates in a plane-parallel 
flow whose velocity profile coincides with the profile of longitudinal velocity of the mean 
flow in the turbulent boundary layer. The deflection of each plate will be approximated by 
the first mode of the Galerkin expansion used in [6]. Boundary conditions on the edges of 
the plates and restrictions on their geometric dimensions were also given in [6]. An ex- 
pression of the following from [6] can be written for the mechanical response of the flow 
to the harmonic (~e -imt) vibrations of the plates 

F(O) PU~ko (GA1,2~ + G1,2A2,1~). 1,:~= - -  ( 1 . 1 )  

Here, we have used the same notation as in [6]: Ajm is the amplitude of the first mode of 

deflection of the j-th plate; G and Gl, 2 are elements of the matrix of the dimensionless 
additional elasticities (for the vibrations in the first mode); p is the density of the moving 
fluid; 6 is the thickness of the boundary layer; k 0 = ~/L I (L I is the dimension of the plates 
along the flow); and the zero superscript denotes the incompressible-fluid approximation. 

To describe nonharmonic vibrations of plates with zero initial distrubances in the flow, 
wewill regard (i.i) as a constraint on Laplace transformations of the variables Fi~(t) and 

Ai,2(t)*. This can be done by virtue of the definition of the frequency functions G and 

GI, 2 as analytic continuations from the contour of integration in the inverse Laplace trans- 
form to the real axis of the complex plane ~ [5]. 

For practical realization of transformations from (I.I) to a time representation, we 
approximate G and GI, 2 by analytic functions m. We require that these approximations ensure 
agreement between the control frequency relations obtained from them and the analogous rela- 
tions constructed from calculations of G and GI, 2 within a finite interval of real values m. 
We will proceed from the representation of G and Gl, 2 as the sum of the principal part (which 
coincides with the quasi-potential approximation for these functions -- see [6]) and small 

*The complex parameter m is related to the additional Laplace transform parameter p by the 
equation p = --i~. 
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additional terms reflecting dissipative processes. We write the approximations in the di- 
mensionless variables ~0=k06, c=o/k0u~ , used in [6]: 

= - (~0~ ~ + 4) + ~ [~ (~)- zg0~]; 

~qo 7 § % 

- o  . - �9 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

The parameters of the quasi-potential components in (1.2) and (1.4) at k0 = i, R = 8"104 

and the plate dimension ratio L2/L I = 3 have the form [6] a 0 = 1.8, d o = 0.46, a I = 0.54, 

b I = 0.43, d I = 0.i0. The parameters of the dissipative complements are chosen on the basis 

of agreement of the functions G i and AG~.~ (AG = G~--G~)calculated in [6] and their analogs 

~(~-g0~)jand ~i~ at the control points. For these values of k0 and R we found ~ = 0.005, 

q0 = 0.76, s o = --1.38, o 0 = 1.18, c o = 0.75, go = 1.17, 61 = 0.0079, ql = --0.7, s I = --0.20, 

o I = 0.56, c I = 0.75. The dashed lines in Fig. la and b, show the initial functions G i 

and AGr,i, while the solid lines show their approximations (I:AG r, 2:AGi). The co- 

efficients $ and 61 in (1.2) and (1.4) were used to normalize the functions ~ -- ig0c and ~i: 

we assumed that ~i -- go ~ = 1 and F li = 1 at the points of the first (reckoned from c = 0) 

maximum of G i and AGi, respectively. 

The question of the ambiguity of representations (1.2-1.5) should be examined within 
the framework of the overall problem of determining the analytic transfer function from its 
real or imaginary parts assigned for real frequencies m. The transfer function is found 
unambiguously if a one-two-one correspondence can be established between its real and 
imaginary parts on the real axis of the complex plane ~; In electrodynamics, the analogous 
relation for permittivity is known as the Kramers--Kronig relation [7]. It exists when the 
transfer function describes the relaxational response of the medium. In the absence of a 
transfer function, this is formally expressed as singularities in the upper half-plane and 
its approach toward zero at Iml § ~, Im ~ > 0. 

If we assume that the terms --$g0 ~ in (1.2) for G i approximates (within a finite fre- 
quency interval) the nondecreasing part of the asymptote G i for large m, then the second 
term ~/can be identified with the imaginary part of the relaxational response of the flow. 
In this ~ase, Eq. (1.5), giving the required profile of G i with real ~, unambiguously de" 
fines this response in the form of an analytic function of frequency ~. We initially rep- 
resent the matrix elements GI, 2 in the form GL~ ' (ai~2~ bl~+ d~)+ zl,2, where the analytic 

functions zi,2(~) satisfy the condition zl, 2 + 0 at Iml § ~, Im m ~ 0 and have no singulari- 

ties in the upper half-plane. We will express zl, 2 through the small difference AG = Gl* -- 

G2, which determines the energy dissipated by the vibrations. To do this, we introduce 

analytic functions @1(m) and @2(m), which with real ~ satisfy the conditions @ir = AGr, 

@2i = AGi" Constructing the combinations (Gl + G2) i and (G I --G2) r, we obtain the sought 

expressions: z,.~ = ~(~__~i--~=). i In particular, if AG r and AG i are the real and imaginary 
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parts of the same analytic function @(m) (r = Ca ~ r we obtain z i = 0 and za = --r It 

can be seen from Fig. ib that this is the situation which is approximately realized in our 
case. Meanwhile, ~ ~ ~i~i. 

The absence of a dissipative component in (1.4) for Gi indicates that the dissipative 
constraint is directed downstream (from plate 1 to plate 2). Physically, this is related 
to convection of the decaying vortical disturbances discussed above. We emphasize that a 
weak nonreciprocal dissipative relationship exists between the plates against the background 
of a strong reciprocal conservative relation.* 

2. Dynamic Model for Fluctural Vibration of Plates in a Boundary Layer. The response of 

the flow (I.I) represents the compelling force in the excitation equation for the deflections 
of the plates in the first mode: 

d2Aj dAj ,, ~,~+2r._3T_+(Dkg--NkO)Aj-b 3D-~ koAj* ~ = F ~ ( t ) ,  j - -  1 ,2  (2.1) 

(the notation is the same as was used in [6]). The nonlinearity of the response of the 
flow in the given case can be roughly evaluated as being on the order of Ik0Ajl 2. The 

flexural nonlinearity in (2.1) leads to a limit on the increase of Aj at a level of the 

same order as the plate thickness h (see Part 5). Thus, for sufficiently thin plates it 
is interesting to analyze Eq. (2.1) with linear flow response (i.I). 

To solve (2.1), we introduce the new dimensionless variables: ~=~,)/~)0, T=~0t, /T12=A12/h. 

V=uj~o/oo, oo=[(Ok~--Nk~)/?~] ~/2 (?0=^f+p/k0) - Proceeding on the basis of Eqs. (i..2-1.5), 

we find the auxiliary variables ~i,2(~) and q(T) by means of the equations ~i,~=~ -~ ~,2o,  

~I~ = % V A;, Here, the subscript ~ denotes Laplace transformation with respect to T. These 

relations can be reduced to polynomial form relative to ~, which then allows us to change 

over to differential equations. Along with the "incompressible" component (i.i), the total 
response Fj should include the additional terms F(a) accounting for sound radiation [6] 1,2 

First we write the system of equations for one plate (omitting the bars above Am,2): 

o• I = 

o 

-~- ffoV~l + V2C~I = ~oVAI - -  soV2A1. 

(2.2a) 

( 2 . 2 b )  

4 L2o 
Here, the dots denote derivatives with respect to ~; • : (i--N/k~D)-1; ~---- ~al-~a 4<I (c a is 

the speed of sound); ds=ald0V 2- I; m0=,~+ala0; a=?/?0; ~l-----i--~. The contribution of the 

radiation losses (the terms -$) is written in transformed form in Eq. (2.2a). Its initial 

representation ~A'l leads to an equation in which the leading derivative is accompanied by a 

small parameter, thus allowing for the occurrence of "rapid motions" [10, ii]. The multipole 
expansion of the pressure field whose first approximation yielded the radiative component of 
the response of the medium cannot be used for such motions (with the characteristic time ~$). 

To reduce the order of the initial equation, we transformed the term %A'~ by inserting into 

it expressions obtained for 71" from the same equation after discarding terms of the order 

%2 f~, ~%. This procedure led to Eq. (2.2a), in which the radiation losses are transformed 
into the effective nonlinear absorption. 

*This distinguishes the given model connecting the plates from the model proposed in [8] to 
describe a conservative unidirectional relationship between vortical structures in a shear 
flow (also see [9]). 
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The equations for a pair of adjacent plates are similarly constructed and have the 
form 

rnoA ~ + a~a~Ao. ---- - -  ~ h ~  + d,A~ + axVb~)l., + 

-[- (zIV~dxA2 - -  3• - -  axB (V'2~ + VgoA~) + ]a; 

rno~i 2 -~ Cr 1 = --  2rite + d~A 2 - -  a~Vb~ft~ + 

+ aiV~ - -  3• - -  a~[~ (V2~., + Vgo~L. ) q- a,.g,VZq + / ~ ;  

A [ (4  - 0• L + ( 4  -- 9• 

~l,'~ "q-- o'oV~l,2 -t- V~ 9 = q O g A ] ,  c~ - -  '%V~ 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

In determining the term for the radiation losses fa in (2.2-2.3), along with the above- 
indicated second-order quantities we discarded terms on the order of the product ~ and the 
coupling factors al, b• dl, $i. The coefficient K can be excluded from the resulting 
equations by changing over to the new variables ILjnew = uj~ (uj = A12, ~12, ~). Having in mind 

such a substitution of variables, without loss of generality we can put K = 1 in (2.2-2.6). 

We will henceforth use the response parameters indicated in Part 1 in the numerical 
solution of systems (2.2) and (2.3-2.6)~ We also assume that a = 0.2 (a I = 0.8), which 
corresponds to dominance of the additional mass over the intrinsic mass of the plate [5, 6]. 
The change in dimensionless flow velocity V with the other parameters in (1.2-1.5) fixed 
is related to the assumption that these parameters depend little on the Reynolds number. 
Such an approximation is satisfactory when V changes by a factor of 1.5-2. 

3. Dynamics of a Conservative System. The qualitative features of the solution of 

systems (2.2) and (2.3-2.6) can be determined by examining the solutions of the conservative 
problem obtained from (2.2-2.6) with ~, $, $, 61 = 0. In this case, the Duffing equation 
[12-15] follows from (2.2a) for one plate 

rao~l 1 - -  d~A 1 + 3A~ = O. (3.1) 

Phase portrait (3.1) has the characteristic form of "points" in the plane At, AI at d s > 0 

(velocity V is greater than the divergence threshold V= = I/Y~id0). Energy is conserved on 
each phase trajectory 

�9 3 
H =  Ti moA~ ---5-i d~A~ + -~- A 1 = const. ( 3 . 2 )  

The quadratic terms in (3.2) determine the energy of infinitesimal deviations from the 
neutral equilibrium state. At d s > 0, potential energy (the term ~A~) is negative, while 

kinetic energy (the term -A~) is always positive. It is because of the different signs of 

these components that IAI[ and JAIl can increase without limit (within the framework of 
the linear model) while total energy remains constant. The onset of instability is indicated 
by the infinite character of the lines of constant energy in the neighborhood of the neutral 
equilibrium state [the saddle point in phase portrait (3.1)]. The appearance of negative 
potential energy is connected with the nonequilibrium character of the system and is a formal 
expression of the possibility of reversible transformation of the energy flow (through the 
work done by pressure forces) into the kinetic energy of vibration of a plate with an asso- 
ciated mass of fluid. In the nonlinear problem [with allowance for the term -A 4 in (3.2)], 

potential energy becomes positive with an increase in A I. This determines the limit of 
instability, since no further increase in A I is possible after potential energy reaches 
the value equal to a const in (3.2). 

The above energy interpretation of the onset of static instability can be generalized 
to the case of an arbitrary number of coupled plates. It is also applicable to a wide range 
of conservative nonequilibrium systems and to wave fields in conservative nonequilibrium 
media. Following [16], we will refer to the instabilities that develop in such systems 
(media) as reactive. They correspond to complex-conjugate roots of a characteristic (dis- 
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persion) equation with real coefficients. Generalizing the above results, we see that the 
existence of reactive instability should be linked with the absence of a definite sign for 
energy as the quadratic form of the generalized coordinates and velocities (momenta) form- 
ing the phase space of the system.* It is in this case that infinite isoenergetic surfaces 
containing separatrices and other infinite phase trajectories appear in the phase space. 

Divergence of the pair of plates at the parameter values indicated in Part 1 occurs 
at V > Vcl z 1.48. Meanwhile, the characteristic equation has one imaginary root in the 

region Vcl < V < Vc2 z 1.85 and two such roots at V > Vc2 [6]. Thus, complex behavior by 

the phase trajectories is seen from the solution of the equations of the conservative prob- 
lem for two coupled plates in the region of their divergence, with the initial conditions 
for Az, 2 and AI,2 being in the form of small "seeds". In this case, the trace of the phase 

trajectory on the planes Az, AI and A2, A2 fills a region having the form of a "butterfly" 

which is symmetrical relative to the coordinate axes (the same result is obtained for the 
Duffing equation with a periodic external force - see [14], p. 55). We present the mean 
parameters for such randomness at V = 2: <AI.2) ~ O, AL2, = <AI.2 -- (AI,~>> I/2 ~0.4, K= (At--<AI>) 

(A~--<A2>)/AI,A2,~0.69 (<...> denotes averaging over time z). A minus sign for the correlation 

coefficient K indicates that the deflection of the plates is primarily antiphase in nature 
(the mechanism of this phenomenon was discussed in [5]). As is known, one of the main 
criteria used for dynamic chaos is the presence of positive Lyapunov exponents. The largest 
of these exponents X m determines the increment of the exponential acceleration of phase 

trajectories [13, 14]. At V = 2, we found the value X m z 0.067 for the characteristic fre- 

quency of vibration ~ ~ 0.3 (methods of calculating ~m were discussed in [14, 15]. 

At r, $ << i, ~ = 0, we obtain the following from (2.1) for the rate of change in the 
energy of an individual plate 

dt 
m o (3.3) 

where H=H--(~/mo)(ds--3A2,)~4, ~ H. It follows from (3.1) that normal dissipation (losses) 

leads to a decrease in the "quasi-energy" H until one of its local minima (coinciding with 

the local minimum of H) is reached. This marks the establishment of one of the two non- 
neutral equilibrium states of the plate. 

It can be concluded from the above analysis that the character of reactive instability 
is not crucial to the onset of free vibration (nonlinear flutter). Flutter is possible with 
both oscillatory and quasi-static instability if the losses in the plates are compensated 
for by anomalous dissipation -- an irreversible removal of energy from the flow.r 

4. Nonlinear Flutter of Plates. Let us examine Eqs. (2.2-2.6) when the vibrations of 
the plates are intensified by the flow (~, ~i ~ 0). The technique of averaging over non- 
linear vibrations can be used with system (2.2) for one plate (see [12], for example). Here, 

*In the case of a distributed system, we would be concerned with the phase space for a 
single Fourier solid harmonic of the wave field [17]. 

%The anomalous dissipation which takes place during supersonic panel flutter in a uniform 
flow is due to the radiation, into free space, of acoustic waves carrying negative energy. 
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r, $, and ~ << 1 are used as small parameters, while the generating family of periodic solu- 

tions is determined by Eq. (3.1). The qualitative results to be obtained from such an ap- 
proach can be predicted by using a freque_ncy characteristic of the rate of ene__rgy intake 

during quasi-harmonic plate vibration %(~). At $ = 0, we obtain %(~)N ~iV2G~(~/F)_2r-o~ 
The frequency of vibration of nonlinear oscillatory (3.1) increases with an increase in 
the amplitude of these vibrations (at d s > 0, this applies to periodic phase trajectories 
embracing the separatrix contour). When frequency lies within the region in which i < 0, 
the increase in amplitude ceases and a steady-state regime is established. As follows from 
(3.3), radiation losses can only lower the amplitude of free vibration. 

These conclusions are supported by the results of numerical solution of (2.2) with the 

initial conditions ~i(0)= 41(0) = 0 and IA~(0)[, IA,(0) l ~ I. At d s > 0, the limiting cycle in 

the plane AI, AI always embraces the separatrix contour of Eq. (3.1). Figure 2a shows such 

a limiting cycle obtained with V = 2, r = 0.004, $ = 0.025, and the enclosed separatrix 

contour of Eq. (3.1) (dashed curve). Figure 2b shows the dependence of the amplitude of 
the free vibrations A m and their period T o (curves 1 and 2) on $ (V = 2, r = 0.004). It 

has the hysteresis loop typical of impulsively excited systems. The threshold value $ = 

$i : 0.038 at which the vibrations suddenly cease Corresponds to the creation of a stable 

limiting cycle embracing the separatrix contour and a pair of unstable limiting cycles 

inside the separatrix loop (Fig. 2a). At the point ~ = $2 : 0.033 at which vibrations are 
suddenly excited, the unstable limiting cycles merge with focus-type equilibrium states and 
impart their instability to the latter. The dependence of the amplitude and period of the 
vibrations on r with fixed $ is similar in form. Nonimpulsive excitation was observed at 

V < Vc : 1.65. 

The system of equations for a pair of plates was solved with the initial conditions 

~1,2(0), ~1.2(0), ~(0), ~(0)=0; IAI,2(0) I, [At~(0)[~1. The existence of a conservative system of 

a nonattracting stochastic set in the phase state (see Part 3) results in the appearance of 
a random attractor in the phase state of weakly dissipative system (2.3-2.6). Figures 3 
and 4 show results of calculation of the main characteristics of random steady-state vibra- 
tions at V = 2, r = 0.004, and $ = 0.01. The deflection spectrum of the first plate I l and 

the corresponding spectrum of the pair of plates F were calculated from the formulas 
T T 

o o 
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where T is the length of the realization in terms of ~; <...> denotes averaging over the 
ensemble (in the given case, we averaged 60 realizations of the length T = 400). The de- 

pendence of IFI z/2 on ~ is similar to that for 1 I/2 shown in Fig. 4a. The phase character- 
I 

istic of the reciprocal spectrum ~ = arg F is shown in Fig. 4b. In calculating the main 

Lyapunov exponent for the given regime, we obtained the value A m z 0.12. 

Figure 5 shows the dependence of the rate of oscillation of deflection A~, (a) and the 

correlation coefficient (b) on V at r = 0.004 and $ = 0.01. The mean displacements of the 

plates were close to zero for all values of V, with the relation Az, = A=, being satisfied. 

Strictly periodic natural vibrations were generated in region I. These vibrations were 

similar to those described above for one plate (Fig. 2a). A random region was established 
in region II. The transition from regular to random vibrations occurred within a relatively 
narrow region III. Impulsive excitation of random free vibrations was observed in II (sim- 
ilar to the result shown in Fig. 2b). 

The data shown in Figs. 3-5 makes it possible to explain the origin of dynamic chaos 
in the system we are considering. Independent self-excited plate-oscillators are synchro- 
nized in velocity region I in Fig. 5 when they are coupled, while they become unsynchro- 
nized in velocity region II due to phase mixing which occurs under the influence of conser- 
vative constraints. Here, a quasi-periodic vibration corresponding to the sharp peak in 
the frequency spectrum in Fig. 4a is generated. The incidence of the phase trajectory inside 
the separatrix contour of an individual oscillator (Figs. 2a and 4a) represents failures of 
the periodic regime, resulting in a diffuse high-frequency peak in the power spectrum. In 
accordance with Fig. 4b, the phase shift of the oscillations of plate deflection in these 
two main peaks of the frequency spectrum is displaced slightly from the values • in the 
direction of antiphase deflection • This accounts for the negative value of the total cor- 
relation coefficient. The disappearance of free vibrations with an increase in V (Fig. 5) 
can be attributed to the effect of nonlinear absorption, which prevents an increase in their 
amplitude. Our calculations showed that the oscillatory regime does not disappear with an 
increase in V at g = 0. A disruption in vibration similar to that just mentioned also occurs 
with an increase in V for independent plate-oscillators. This development is connected with 
expansion of the loop of the separatrix contour along the A 1 axis with an increase in V. When 
$ # 0, the limiting cycles on the phase plane of the uncoupled oscillators approach this 
contour and eventually disappear. No free vibrations are excited in this case in the system 
of coupled plates. It should be kept in mind that the vibrations stop at values of V located 
at the limit of applicability of the unimodal approximation for plate deflection. 
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OPTIMUM WING SHAPES IN A HYPERSONIC NONEQUILIBRIUM FLOW 

V. N. Golubkin and V. V. Negoda UDC 533.6.011.55 

The trajectories of aerospace vehicles include sections of hypersonic flight at an 
angle of attack characterized by substantial nonequilibrium flow over the bottom surface 
of the wing (lifting body) [I, 2]. The thin-shock-layer method has proven very fruitful 
for general study of the effect of nonequilibriumphysicochemical processes on the flow 
field and the aerodynamic characteristics of wings. Using this approach for a gas of vari- 
able density, Stalker [3] generalized well-known solutions for a delta wing in the case 
of non-Newtonian flow. The ideas set forth in [4, 5] were used in [6, 7] to integrate a 
system of equations for a three-dimensional nonequilibrium shock layer on a low-aspect- 
ratio wing of arbitrary form. An effective method was proposed in [8] for solving the two- 
dimensional system of equations obtained by integration for the form of the surface of the 
lead shock. Proceeding on the basis of the analytical solution in [4], the authors of [9] 
formulated a variational problem involving determination of the configuration of a wing 
with optimum aerodynamic performance. Despite the fact that the flow field around the 
wing is three-dimensional -- in contrast to the cases examined in [i0] -- the solution re- 
duces to the minimization of a unidimensional functional. The results in [9] pertain to the 
limiting cases of a wing in a flow of an ideal gas or equilibrium reacting air. 

In the present study, we propose a variational method of determining the shape of a 
wing which is to perform optimally under hypersonic conditions for the general case of 
chemically nonequilibrium flow. The solutions that are obtained reveal features of the 
design that allow an improvement in the aerodynamic performance of wings and lifting bodies 

in a relaxing hypersonic flow. 

i. A highly approximate estimate for pressure is obtained from the limiting Newtonian 
scheme of hypersonic flow with an infinitesimally thin shock layer on the surface of a body 

and the density ratio on the coincident lead shock p~/p~ = e = 0. Examining the next ap- 
proximation, with small nontrivial values of e, makes it possibleto more accurately evaluate 
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66-72, March-April, 1993. Original article submitted February 7, 1992. 
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